Static neural network process models: considerations and case studies

نویسندگان

  • David W. Coit
  • Alice E. Smith
چکیده

Neural networks are beginning to be used for the modeling of complex manufacturing processes, usually for process and quality control. Often these models are used to identify optimal process settings. Since a neural network is an empirical model, it is highly dependent on the data used in construction and validation. Using data directly from production ensures availability and fidelity, however the samples may not reflect the entire range of probable operation and, in particular, may not include the optimal process settings. Supplementing production data with observations gathered from designed experiments alleviates the problem of overly focused or incomplete production data sets. This paper considers practical aspects of building and validating neural network models of manufacturing processes, and illustrates the recommended approaches with two diverse case studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange

During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...

متن کامل

Comparison of Efficiency for ‎Hydrological Models (AWBM & ‎SimHyd) and Neural Network (MLP & ‎RBF) in Rainfall–Runoff Simulation ‎(Case study: Bar Aryeh Watershed ‎‌-‌Neyshabur)‎

For suitable programming and management of water resources, access to perfect information from the discharge at the watershed outlet is essential. In most watersheds, the hydrometric station is not available; then, different models are used to simulate the discharge within watersheds without data. The selection of preferred model for rainfall- runoff simulation depends to the purpose of modelin...

متن کامل

Car paint thickness control using artificial neural network and regression method

Struggling in world's competitive markets, industries are attempting to upgrade their technologies aiming at improving the quality and minimizing the waste and cutting the price. Industry tries to develop their technology in order to improve quality via proactive quality control. This paper studies the possible paint quality in order to reduce the defects through neural network techniques in au...

متن کامل

Development of an in-cylinder processes model of a CVVT gasoline engine using artificial neural network

Today, employing model based design approach in powertrain development is being paid more attention. Precise, meanwhile fast to run models are required for applying model based techniques in powertrain control design and engine calibration. In this paper, an in-cylinder process model of a CVVT gasoline engine is developed to be employed in extended mean valve control oriented model and also mod...

متن کامل

An artificial Neural Network approach to monitor and diagnose multi-attribute quality control processes

One of the existing problems of multi-attribute process monitoring is the occurrence of high number of false alarms (Type I error). Another problem is an increase in the probability of not detecting defects when the process is monitored by a set of independent uni-attribute control charts. In this paper, we address both of these problems and consider monitoring correlated multi-attributes proce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998